I want to write a function in Python that returns different fixed values based on the value of an input index.

In other languages I would use a switch or case statement, but Python does not appear to have a switch statement. What are the recommended Python solutions in this scenario?

Solution 1

The original answer below was written in 2008. Since then, Python 3.10 (2021) introduced the match-case statement which provides a first-class implementation of a "switch" for Python. For example:

def f(x):
    match x:
        case 'a':
            return 1
        case 'b':
            return 2
        case _:
            return 0   # 0 is the default case if x is not found

The match-case statement is considerably more powerful than this simple example.

You could use a dictionary:

def f(x):
    return {
        'a': 1,
        'b': 2,

Solution 2

If you'd like defaults, you could use the dictionary get(key[, default]) function:

def f(x):
    return {
        'a': 1,
        'b': 2
    }.get(x, 9)    # 9 will be returned default if x is not found

Solution 3

I've always liked doing it this way

result = {
  'a': lambda x: x * 5,
  'b': lambda x: x + 7,
  'c': lambda x: x - 2

From here

Solution 4

In addition to the dictionary methods (which I really like, BTW), you can also use if-elif-else to obtain the switch/case/default functionality:

if x == 'a':
    # Do the thing
elif x == 'b':
    # Do the other thing
if x in 'bc':
    # Fall-through by not using elif, but now the default case includes case 'a'!
elif x in 'xyz':
    # Do yet another thing
    # Do the default

This of course is not identical to switch/case - you cannot have fall-through as easily as leaving off the break statement, but you can have a more complicated test. Its formatting is nicer than a series of nested ifs, even though functionally that's what it is closer to.

Solution 5

Python >= 3.10

Wow, Python 3.10+ now has a match/case syntax which is like switch/case and more!

PEP 634 -- Structural Pattern Matching

Selected features of match/case

1 - Match values:

Matching values is similar to a simple switch/case in another language:

match something:
    case 1 | 2 | 3:
        # Match 1-3.
    case _:
        # Anything else.
        # Match will throw an error if this is omitted 
        # and it doesn't match any of the other patterns.

2 - Match structural patterns:

match something:
    case str() | bytes():  
        # Match a string like object.
    case [str(), int()]:
        # Match a `str` and an `int` sequence 
        # (`list` or a `tuple` but not a `set` or an iterator). 
    case [_, _]:
        # Match a sequence of 2 variables.
        # To prevent a common mistake, sequence patterns dont match strings.
    case {"bandwidth": 100, "latency": 300}:
        # Match this dict. Extra keys are ignored.

3 - Capture variables

Parse an object; saving it as variables:

match something:
    case [name, count]
        # Match a sequence of any two objects and parse them into the two variables.
    case [x, y, *rest]:
        # Match a sequence of two or more objects, 
        # binding object #3 and on into the rest variable.
    case bytes() | str() as text:
        # Match any string like object and save it to the text variable.

Capture variables can be useful when parsing data (such as JSON or HTML) that may come in one of a number of different patterns.

Capture variables is a feature. But it also means that you need to use dotted constants (ex: COLOR.RED) only. Otherwise, the constant will be treated as a capture variable and overwritten.

More sample usage:

match something:
    case 0 | 1 | 2:
        # Matches 0, 1 or 2 (value).
        print("Small number")
    case [] | [_]:
        # Matches an empty or single value sequence (structure).
        # Matches lists and tuples but not sets.
        print("A short sequence")
    case str() | bytes():
        # Something of `str` or `bytes` type (data type).
        print("Something string-like")
    case _:
        # Anything not matched by the above.
        print("Something else")

Python <= 3.9

My favorite Python recipe for switch/case was:

choices = {'a': 1, 'b': 2}
result = choices.get(key, 'default')

Short and simple for simple scenarios.

Compare to 11+ lines of C code:

// C Language version of a simple 'switch/case'.
switch( key ) 
    case 'a' :
        result = 1;
    case 'b' :
        result = 2;
    default :
        result = -1;

You can even assign multiple variables by using tuples:

choices = {'a': (1, 2, 3), 'b': (4, 5, 6)}
(result1, result2, result3) = choices.get(key, ('default1', 'default2', 'default3'))

Solution 6

class switch(object):
    value = None
    def __new__(class_, value):
        class_.value = value
        return True

def case(*args):
    return any((arg == switch.value for arg in args))


while switch(n):
    if case(0):
        print "You typed zero."
    if case(1, 4, 9):
        print "n is a perfect square."
    if case(2):
        print "n is an even number."
    if case(2, 3, 5, 7):
        print "n is a prime number."
    if case(6, 8):
        print "n is an even number."
    print "Only single-digit numbers are allowed."


n = 2
#n is an even number.
#n is a prime number.
n = 11
#Only single-digit numbers are allowed.

Solution 7

My favorite one is a really nice recipe. It's the closest one I've seen to actual switch case statements, especially in features.

class switch(object):
    def __init__(self, value):
        self.value = value
        self.fall = False

    def __iter__(self):
        """Return the match method once, then stop"""
        yield self.match
        raise StopIteration
    def match(self, *args):
        """Indicate whether or not to enter a case suite"""
        if self.fall or not args:
            return True
        elif self.value in args: # changed for v1.5, see below
            self.fall = True
            return True
            return False

Here's an example:

# The following example is pretty much the exact use-case of a dictionary,
# but is included for its simplicity. Note that you can include statements
# in each suite.
v = 'ten'
for case in switch(v):
    if case('one'):
        print 1
    if case('two'):
        print 2
    if case('ten'):
        print 10
    if case('eleven'):
        print 11
    if case(): # default, could also just omit condition or 'if True'
        print "something else!"
        # No need to break here, it'll stop anyway

# break is used here to look as much like the real thing as possible, but
# elif is generally just as good and more concise.

# Empty suites are considered syntax errors, so intentional fall-throughs
# should contain 'pass'
c = 'z'
for case in switch(c):
    if case('a'): pass # only necessary if the rest of the suite is empty
    if case('b'): pass
    # ...
    if case('y'): pass
    if case('z'):
        print "c is lowercase!"
    if case('A'): pass
    # ...
    if case('Z'):
        print "c is uppercase!"
    if case(): # default
        print "I dunno what c was!"

# As suggested by Pierre Quentel, you can even expand upon the
# functionality of the classic 'case' statement by matching multiple
# cases in a single shot. This greatly benefits operations such as the
# uppercase/lowercase example above:
import string
c = 'A'
for case in switch(c):
    if case(*string.lowercase): # note the * for unpacking as arguments
        print "c is lowercase!"
    if case(*string.uppercase):
        print "c is uppercase!"
    if case('!', '?', '.'): # normal argument passing style also applies
        print "c is a sentence terminator!"
    if case(): # default
        print "I dunno what c was!"

Some of the comments indicated that a context manager solution using with foo as case rather than for case in foo might be cleaner, and for large switch statements the linear rather than quadratic behavior might be a nice touch. Part of the value in this answer with a for loop is the ability to have breaks and fallthrough, and if we're willing to play with our choice of keywords a little bit we can get that in a context manager too:

class Switch:
    def __init__(self, value):
        self.value = value
        self._entered = False
        self._broken = False
        self._prev = None

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        return False # Allows a traceback to occur

    def __call__(self, *values):
        if self._broken:
            return False
        if not self._entered:
            if values and self.value not in values:
                return False
            self._entered, self._prev = True, values
            return True
        if self._prev is None:
            self._prev = values
            return True
        if self._prev != values:
            self._broken = True
            return False
        if self._prev == values:
            self._prev = None
            return False
    def default(self):
        return self()

Here's an example:

# Prints 'bar' then 'baz'.
with Switch(2) as case:
    while case(0):
    while case(1, 2, 3):
    while case(4, 5):
    while case.default:

Solution 8

class Switch:
    def __init__(self, value):
        self.value = value

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        return False # Allows a traceback to occur

    def __call__(self, *values):
        return self.value in values

from datetime import datetime

with Switch(datetime.today().weekday()) as case:
    if case(0):
        # Basic usage of switch
        print("I hate mondays so much.")
        # Note there is no break needed here
    elif case(1,2):
        # This switch also supports multiple conditions (in one line)
        print("When is the weekend going to be here?")
    elif case(3,4):
        print("The weekend is near.")
        # Default would occur here
        print("Let's go have fun!") # Didn't use case for example purposes

Solution 9

There's a pattern that I learned from Twisted Python code.

class SMTP:
    def lookupMethod(self, command):
        return getattr(self, 'do_' + command.upper(), None)
    def do_HELO(self, rest):
        return 'Howdy ' + rest
    def do_QUIT(self, rest):
        return 'Bye'

SMTP().lookupMethod('HELO')('foo.bar.com') # => 'Howdy foo.bar.com'
SMTP().lookupMethod('QUIT')('') # => 'Bye'

You can use it any time you need to dispatch on a token and execute extended piece of code. In a state machine you would have state_ methods, and dispatch on self.state. This switch can be cleanly extended by inheriting from base class and defining your own do_ methods. Often times you won't even have do_ methods in the base class.

Edit: how exactly is that used

In case of SMTP you will receive HELO from the wire. The relevant code (from twisted/mail/smtp.py, modified for our case) looks like this

class SMTP:
    # ...

    def do_UNKNOWN(self, rest):
        raise NotImplementedError, 'received unknown command'

    def state_COMMAND(self, line):
        line = line.strip()
        parts = line.split(None, 1)
        if parts:
            method = self.lookupMethod(parts[0]) or self.do_UNKNOWN
            if len(parts) == 2:
                return method(parts[1])
                return method('')
            raise SyntaxError, 'bad syntax'

SMTP().state_COMMAND('   HELO   foo.bar.com  ') # => Howdy foo.bar.com

You'll receive ' HELO foo.bar.com ' (or you might get 'QUIT' or 'RCPT TO: foo'). This is tokenized into parts as ['HELO', 'foo.bar.com']. The actual method lookup name is taken from parts[0].

(The original method is also called state_COMMAND, because it uses the same pattern to implement a state machine, i.e. getattr(self, 'state_' + self.mode))

Solution 10

I'm just going to drop my two cents in here. The reason there isn't a case/switch statement in Python is because Python follows the principle of "there's only one right way to do something". So obviously you could come up with various ways of recreating switch/case functionality, but the Pythonic way of accomplishing this is the if/elif construct. I.e.,

if something:
    return "first thing"
elif somethingelse:
    return "second thing"
elif yetanotherthing:
    return "third thing"
    return "default thing"

I just felt PEP 8 deserved a nod here. One of the beautiful things about Python is its simplicity and elegance. That is largely derived from principles laid out in PEP 8, including "There's only one right way to do something."

Solution 11

Let's say you don't want to just return a value, but want to use methods that change something on an object. Using the approach stated here would be:

result = {
  'a': obj.increment(x),
  'b': obj.decrement(x)
}.get(value, obj.default(x))

Here Python evaluates all methods in the dictionary.

So even if your value is 'a', the object will get incremented and decremented by x.


func, args = {
  'a' : (obj.increment, (x,)),
  'b' : (obj.decrement, (x,)),
}.get(value, (obj.default, (x,)))

result = func(*args)

So you get a list containing a function and its arguments. This way, only the function pointer and the argument list get returned, not evaluated. 'result' then evaluates the returned function call.

Solution 12

Solution to run functions:

result = {
    'case1':     foo1, 
    'case2':     foo2,
    'case3':     foo3,

where foo1(), foo2() and foo3() are functions

Example 1 (with parameters):

option = number['type']
result = {
    'number':     value_of_int,  # result = value_of_int(number['value'])
    'text':       value_of_text, # result = value_of_text(number['value'])
    'binary':     value_of_bin,  # result = value_of_bin(number['value'])

Example 2 (no parameters):

option = number['type']
result = {
    'number':     func_for_number, # result = func_for_number()
    'text':       func_for_text,   # result = func_for_text()
    'binary':     func_for_bin,    # result = func_for_bin()

Example 4 (only values):

option = number['type']
result = {
    'number':    lambda: 10,       # result = 10
    'text':      lambda: 'ten',    # result = 'ten'
    'binary':    lambda: 0b101111, # result = 47

Solution 13

If you have a complicated case block you can consider using a function dictionary lookup table...

If you haven't done this before it's a good idea to step into your debugger and view exactly how the dictionary looks up each function.

NOTE: Do not use "()" inside the case/dictionary lookup or it will call each of your functions as the dictionary / case block is created. Remember this because you only want to call each function once using a hash style lookup.

def first_case():
    print "first"

def second_case():
    print "second"

def third_case():
    print "third"

mycase = {
'first': first_case, #do not use ()
'second': second_case, #do not use ()
'third': third_case #do not use ()
myfunc = mycase['first']

Solution 14

If you're searching extra-statement, as "switch", I built a Python module that extends Python. It's called ESPY as "Enhanced Structure for Python" and it's available for both Python 2.x and Python 3.x.

For example, in this case, a switch statement could be performed by the following code:

macro switch(arg1):
    while True:
        socket case(arg2):
            if val==%arg2% or cont:
        socket else:

That can be used like this:

        print("Smaller than 2"):
        print ("greater than 1")

So espy translate it in Python as:

while True:
    if a==0 or cont:
        print ("Zero")
    if a==1 or cont:
        print ("Smaller than 2")
    print ("greater than 1")

Solution 15

Most of the answers here are pretty old, and especially the accepted ones, so it seems worth updating.

First, the official Python FAQ covers this, and recommends the elif chain for simple cases and the dict for larger or more complex cases. It also suggests a set of visit_ methods (a style used by many server frameworks) for some cases:

def dispatch(self, value):
    method_name = 'visit_' + str(value)
    method = getattr(self, method_name)

The FAQ also mentions PEP 275, which was written to get an official once-and-for-all decision on adding C-style switch statements. But that PEP was actually deferred to Python 3, and it was only officially rejected as a separate proposal, PEP 3103. The answer was, of course, nobut the two PEPs have links to additional information if you're interested in the reasons or the history.

One thing that came up multiple times (and can be seen in PEP 275, even though it was cut out as an actual recommendation) is that if you're really bothered by having 8 lines of code to handle 4 cases, vs. the 6 lines you'd have in C or Bash, you can always write this:

if x == 1: print('first')
elif x == 2: print('second')
elif x == 3: print('third')
else: print('did not place')

This isn't exactly encouraged by PEP 8, but it's readable and not too unidiomatic.

Over the more than a decade since PEP 3103 was rejected, the issue of C-style case statements, or even the slightly more powerful version in Go, has been considered dead; whenever anyone brings it up on python-ideas or -dev, they're referred to the old decision.

However, the idea of full ML-style pattern matching arises every few years, especially since languages like Swift and Rust have adopted it. The problem is that it's hard to get much use out of pattern matching without algebraic data types. While Guido has been sympathetic to the idea, nobody's come up with a proposal that fits into Python very well. (You can read my 2014 strawman for an example.) This could change with dataclass in 3.7 and some sporadic proposals for a more powerful enum to handle sum types, or with various proposals for different kinds of statement-local bindings (like PEP 3150, or the set of proposals currently being discussed on -ideas). But so far, it hasn't.

There are also occasionally proposals for Perl 6-style matching, which is basically a mishmash of everything from elif to regex to single-dispatch type-switching.

Solution 16

Expanding on the "dict as switch" idea. If you want to use a default value for your switch:

def f(x):
        return {
            'a': 1,
            'b': 2,
    except KeyError:
        return 'default'

Solution 17

I found that a common switch structure:

switch ...parameter...
case p1: v1; break;
case p2: v2; break;
default: v3;

can be expressed in Python as follows:

(lambda x: v1 if p1(x) else v2 if p2(x) else v3)

or formatted in a clearer way:

(lambda x:
     v1 if p1(x) else
     v2 if p2(x) else

Instead of being a statement, the Python version is an expression, which evaluates to a value.

Solution 18

The solutions I use:

A combination of 2 of the solutions posted here, which is relatively easy to read and supports defaults.

result = {
  'a': lambda x: x * 5,
  'b': lambda x: x + 7,
  'c': lambda x: x - 2
}.get(whatToUse, lambda x: x - 22)(value)


.get('c', lambda x: x - 22)(23)

looks up "lambda x: x - 2" in the dict and uses it with x=23

.get('xxx', lambda x: x - 22)(44)

doesn't find it in the dict and uses the default "lambda x: x - 22" with x=44.

Solution 19

I didn't find the simple answer I was looking for anywhere on Google search. But I figured it out anyway. It's really quite simple. Decided to post it, and maybe prevent a few less scratches on someone else's head. The key is simply "in" and tuples. Here is the switch statement behavior with fall-through, including RANDOM fall-through.

l = ['Dog', 'Cat', 'Bird', 'Bigfoot',
     'Dragonfly', 'Snake', 'Bat', 'Loch Ness Monster']

for x in l:
    if x in ('Dog', 'Cat'):
        x += " has four legs"
    elif x in ('Bat', 'Bird', 'Dragonfly'):
        x += " has wings."
    elif x in ('Snake',):
        x += " has a forked tongue."
        x += " is a big mystery by default."


for x in range(10):
    if x in (0, 1):
        x = "Values 0 and 1 caught here."
    elif x in (2,):
        x = "Value 2 caught here."
    elif x in (3, 7, 8):
        x = "Values 3, 7, 8 caught here."
    elif x in (4, 6):
        x = "Values 4 and 6 caught here"
        x = "Values 5 and 9 caught in default."


Dog has four legs
Cat has four legs
Bird has wings.
Bigfoot is a big mystery by default.
Dragonfly has wings.
Snake has a forked tongue.
Bat has wings.
Loch Ness Monster is a big mystery by default.

Values 0 and 1 caught here.
Values 0 and 1 caught here.
Value 2 caught here.
Values 3, 7, 8 caught here.
Values 4 and 6 caught here
Values 5 and 9 caught in default.
Values 4 and 6 caught here
Values 3, 7, 8 caught here.
Values 3, 7, 8 caught here.
Values 5 and 9 caught in default.

Solution 20

You can use a dispatched dict:

#!/usr/bin/env python

def case1():
    print("This is case 1")

def case2():
    print("This is case 2")

def case3():
    print("This is case 3")

token_dict = {
    "case1" : case1,
    "case2" : case2,
    "case3" : case3,

def main():
    cases = ("case1", "case3", "case2", "case1")
    for case in cases:

if __name__ == '__main__':


This is case 1
This is case 3
This is case 2
This is case 1

Solution 21

# simple case alternative

some_value = 5.0

# this while loop block simulates a case block

# case
while True:

    # case 1
    if some_value > 5:
        print ('Greater than five')

    # case 2
    if some_value == 5:
        print ('Equal to five')

    # else case 3
    print ( 'Must be less than 5')

Solution 22

def f(x):
    dictionary = {'a':1, 'b':2, 'c':3}
    return dictionary.get(x,'Not Found') 
##Returns the value for the letter x;returns 'Not Found' if x isn't a key in the dictionary

Solution 23

I was quite confused after reading the accepted answer, but this cleared it all up:

def numbers_to_strings(argument):
    switcher = {
        0: "zero",
        1: "one",
        2: "two",
    return switcher.get(argument, "nothing")

This code is analogous to:

    switch(argument) {
        case 0:
            return "zero";
        case 1:
            return "one";
        case 2:
            return "two";
            return "nothing";

Check the Source for more about dictionary mapping to functions.

Solution 24

I liked Mark Bies's answer

Since the x variable must used twice, I modified the lambda functions to parameterless.

I have to run with results[value](value)

In [2]: result = {
    ...:   'a': lambda x: 'A',
    ...:   'b': lambda x: 'B',
    ...:   'c': lambda x: 'C'
    ...: }
    ...: result['a']('a')
Out[2]: 'A'

In [3]: result = {
    ...:   'a': lambda : 'A',
    ...:   'b': lambda : 'B',
    ...:   'c': lambda : 'C',
    ...:   None: lambda : 'Nothing else matters'

    ...: }
    ...: result['a']()
Out[3]: 'A'

Edit: I noticed that I can use None type with with dictionaries. So this would emulate switch ; case else

Solution 25

def f(x):
     return 1 if x == 'a' else\
            2 if x in 'bcd' else\
            0 #default

Short and easy to read, has a default value and supports expressions in both conditions and return values.

However, it is less efficient than the solution with a dictionary. For example, Python has to scan through all the conditions before returning the default value.

Solution 26

Simple, not tested; each condition is evaluated independently: there is no fall-through, but all cases are evaluated (although the expression to switch on is only evaluated once), unless there is a break statement. For example,

for case in [expression]:
    if case == 1:
        print(end='Was 1. ')

    if case == 2:
        print(end='Was 2. ')

    if case in (1, 2):
        print(end='Was 1 or 2. ')

    print(end='Was something. ')

prints Was 1. Was 1 or 2. Was something. (Dammit! Why can't I have trailing whitespace in inline code blocks?) if expression evaluates to 1, Was 2. if expression evaluates to 2, or Was something. if expression evaluates to something else.

Solution 27

There have been a lot of answers so far that have said, "we don't have a switch in Python, do it this way". However, I would like to point out that the switch statement itself is an easily-abused construct that can and should be avoided in most cases because they promote lazy programming. Case in point:

def ToUpper(lcChar):
    if (lcChar == 'a' or lcChar == 'A'):
        return 'A'
    elif (lcChar == 'b' or lcChar == 'B'):
        return 'B'
    elif (lcChar == 'z' or lcChar == 'Z'):
        return 'Z'
        return None        # or something

Now, you could do this with a switch-statement (if Python offered one) but you'd be wasting your time because there are methods that do this just fine. Or maybe, you have something less obvious:

def ConvertToReason(code):
    if (code == 200):
        return 'Okay'
    elif (code == 400):
        return 'Bad Request'
    elif (code == 404):
        return 'Not Found'
        return None

However, this sort of operation can and should be handled with a dictionary because it will be faster, less complex, less prone to error and more compact.

And the vast majority of "use cases" for switch statements will fall into one of these two cases; there's just very little reason to use one if you've thought about your problem thoroughly.

So, rather than asking "how do I switch in Python?", perhaps we should ask, "why do I want to switch in Python?" because that's often the more interesting question and will often expose flaws in the design of whatever you're building.

Now, that isn't to say that switches should never be used either. State machines, lexers, parsers and automata all use them to some degree and, in general, when you start from a symmetrical input and go to an asymmetrical output they can be useful; you just need to make sure that you don't use the switch as a hammer because you see a bunch of nails in your code.

Solution 28

A solution I tend to use which also makes use of dictionaries is:

def decision_time( key, *args, **kwargs):
    def action1()
        """This function is a closure - and has access to all the arguments"""
    def action2()
        """This function is a closure - and has access to all the arguments"""
    def action3()
        """This function is a closure - and has access to all the arguments"""

   return {1:action1, 2:action2, 3:action3}.get(key,default)()

This has the advantage that it doesn't try to evaluate the functions every time, and you just have to ensure that the outer function gets all the information that the inner functions need.

Solution 29


def switch1(value, options):
  if value in options:

allows you to use a fairly straightforward syntax, with the cases bundled into a map:

def sample1(x):
  local = 'betty'
  switch1(x, {
    'a': lambda: print("hello"),
    'b': lambda: (
      print("goodbye," + local),

I kept trying to redefine switch in a way that would let me get rid of the "lambda:", but gave up. Tweaking the definition:

def switch(value, *maps):
  options = {}
  for m in maps:
  if value in options:
  elif None in options:

Allowed me to map multiple cases to the same code, and to supply a default option:

def sample(x):
  switch(x, {
    _: lambda: print("other") 
    for _ in 'cdef'
    }, {
    'a': lambda: print("hello"),
    'b': lambda: (
    None: lambda: print("I dunno")

Each replicated case has to be in its own dictionary; switch() consolidates the dictionaries before looking up the value. It's still uglier than I'd like, but it has the basic efficiency of using a hashed lookup on the expression, rather than a loop through all the keys.

Solution 30

Expanding on Greg Hewgill's answer - We can encapsulate the dictionary-solution using a decorator:

def case(callable):
    """switch-case decorator"""
    class case_class(object):
        def __init__(self, *args, **kwargs):
            self.args = args
            self.kwargs = kwargs

        def do_call(self):
            return callable(*self.args, **self.kwargs)

return case_class

def switch(key, cases, default=None):
    ret = None
        ret = case[key].do_call()
    except KeyError:
        if default:
            ret = default.do_call()
        return ret

This can then be used with the @case-decorator

def case_1(arg1):
    print 'case_1: ', arg1

def case_2(arg1, arg2):
    print 'case_2'
    return arg1, arg2

def default_case(arg1, arg2, arg3):
    print 'default_case: ', arg1, arg2, arg3

ret = switch(somearg, {
    1: case_1('somestring'),
    2: case_2(13, 42)
}, default_case(123, 'astring', 3.14))

print ret

The good news are that this has already been done in NeoPySwitch-module. Simply install using pip:

pip install NeoPySwitch